Testing

Jessica Hoeck, Olle Haerstedt

Overview

o W
o W
o W

ny tests?

nat's a good test?

nat's testable code?

® Test paradigms

® Our testing system

Why tests

Reduce risk

Different kind of failures:

e Crash failure (500, 404, white-page)

e Block failure (clicking on button does nothing)

e Invisible failure (clicked “Save” but was in fact not saved)

e Cosmetic failure (spelling mistake, logo not loaded)

Good failure

Visible failure always better than invisible:
® Gets reported at once
e Gets fixed quickly

e Invisible failure often fixed “too late” - already lost or leaked data

Risks

® Bugs are risk
e Unmaintainable or buggy tests are also risk

e Strike balance between too many tests and no tests

Regression

Regression = something worked before; now broken
Regression test = fix bug and add test for bug
Goal: to create a test suite and not fix same bug twice

Very important for critical bugs

Refactorization

Test suite makes it safe to refactor the code
Correct way: write the test suite before refactoring

Example: EM

Testing paradigms

® Test Doubles

e White Box Testing

e Black Box Testing

® Grey Box Testing

e Test Driven Development (TDD)

e Behavior Driven Development (BDD)

® Risk-based testing

Testing paradigms: unit testing general info

e System Under Test (SUT)

O Class/Object/Function which will be tested

® Dependencies/ Collaborators

O SUT iteracts with other part of the system

® Test Doubles
O simulate dependencies/collaborators with behavior

O allows unit testing in isolation

® Example Framework:

O sinon.js (js) for spies,stubs and mocks.

Test Doubles: Mocks

Test Doubles: Dummies

® passed around but never actually used

® COMMOonN use case.

o fill parameter list

e Object implements interface nothing else

Test Doubles: Dummies Example

var TaskManager = fTunction(){
var taskList = [];

return {
addTask: function(task){
tasklList.push(task);
+
tasksCount: function(){
return taskList.length;

£rf Test
var assert = require("assert")
describe('add task", function(){
it('should keep track of the number of tasks', function(){
var DummyTask = function{){ return {} };
var taskManager = new TaskManager();

taskManager.addTask({new DummyTask({});
taskManager.addTask({new DummyTask({});

assert.equal(taskManager.tasksCount(), 2)};

1
1

Test Doubles: Spies

e Object that records interaction with other objects

e useful for testing callbacks or how methods are used through SUT

"test should call subscribers on publish": function () {
var callback = sinon.spy();
PubSub.subscribe("message", callback)
PubSub.publishSync({"message");

assertTrue(callback.called);

Test Doubles: Stubs

e fake objects with pre-programmed behavior (simulation)

o for example: returning fixed values

® typical reasons
O avoid inconvenient interface - for example: avoid making requests to server from tests

o feed the system with data

"example of simple stub without any 1ib": function () {
var task = { completed = true }

}

Test Doubles: Fakes

® objects have working implementation, but take shortcuts to make them not
suitable for production

O example: memory database

® One step up from a Stub.

O it returns values but also works as real collaborator

Test Doubles: Fakes Example

var xhr, requests;

before(function {
Xxhr = sinon.useFakeXMLHttpRequest();
requests = [];
¥hr.onCreate = function (req) { requests.push{req); };

1):

after(function () {
// we must clean up when tampering with globals.
Xxhr.restore();

1);

it{"makes a GET request for todo items", function () {
getTodos(42, sinon.spy());

assert.equals(requests.length, 1);
assert.match({requests[@].url, "/todo/s42/items");

1):

Testing pyramid

White-box Testing

e Tests internal structures of an application

e Can be applied
O unit tests

O integration tests

O system tests WHITE BOX TESTING APPROACH

Application Code

Test Case Input e
s Test Case Output

Black-box Testing

e Method of software testing
e Examines functionality without going into internal structure

e Applied to every kind of tests
O unit tests ?
BLACK BOX TESTING APPROACH

O integration tests

O system tests

o acceptance tests A

Input ———> I IETg T

Output
—>

Grey-box Testing

e Combination of white-box testing + black-box testing

e Aim of testing: search defects
O improper structure

O improper usage of application

White box vs Black box

® spagetti code = black box testing

Test Driven Development (TDD)

e White Box Tests

e Write Tests before productive code
e Tests are the contracts

e Red-Green-Refactor Cycle

e Part of Extreme Programming (XP)

Red-Green-Refactor Cycle of TDD

Red-Green-Refactor Cycle:
e Add a test
e This test should fail in the beginning. (red)
e Write productive code that only turns the test to success. (green)

e Test and productive code should be refactored. l/ d

10
I’B@Ltof' green

Pros of Test Driven Development (TDD)

e documentation for code

e Easier automation

e programmers really understand their code

® no untested code inside code base (more stability)

® no or less redundant code by just-in-time refactorization

e testing while writing forces to make interfaces clean enough to be tested

e clear and testable architecture by TDD as design strategy (forces good architecture; modular design)

e early warning to design problems

Cons of Test Driven Development (TDD)

® in the beginning it takes more time to develop tests

e not so much flexible

e hard to apply to existing legacy code

e like any technique TDD can be carried to an extreme

e tests may be hard to write, for example beyond the unit testing level

® whole team has to write and maintain tests

TDD - reported project feedback

Defects
Extemal Quality
Complexity
Size

Effort
Maintainability
Coverage
Productivity

Coupling

Cohesion |

Reported Effects of Test-Driven Development

6 4 2 0 2 4 6
Number of Publications per Altribute and Effect Category

8

[

[I

-
L I —

L]

e

L
I
=

10

12

B Neutral or Inconclusive Effects
B Negative Effects
[Positive Effects

Behavior Driven Development (BDD)

e black-box testing
® emerged by Test Driven Development

e uses simple domain-specific language by natural language constructs

Writing a fm /N

Make the test
acceptance test Writing a failing pass

unit test

Refactor / \

BDD TDD

Refactor

Behavior Driven Development (BDD)

® English like sentences
O express behavior

O expected outcome
e unit test names sentences with conditional verbs (should)

® acceptance tests
O use standard agile framework of a user story
O acceptance criteria
= written of terms of scenarios

= implemented as classes

Example of Behavior Driven Development (BDD)

e Behat PHP BDD Testing Framework

O Feature inside .feature file as text format

Feature: Product basket

In order to buy products

As a customer

I need to be able to put interesting products into a basket
Rules:

- VAT is 20%

- Delivery for basket under €10 is €3

Scenario: Buying a single product under €10

Given there is a “Sith Lord Lightsaber”, which costs €5
When | add the “Sith Lord Lightsaber” to the basket
Then | should have 1 product in the basket

And the overall basket price should be €9

Example Behavior Driven Development (BDD)

class FeatureContext implements Context
{

private Sshelf;

private Shasket;

public function __construct()
{
Sthis->shelf = new Shelf();
Sthis->basket = new Basket();
}
/** @Given there is a :product, which costs €:price
public function therelsAWhichCostsPs(Sproduct, Sprice)
{
Sthis->shelf->setProductPrice(Sproduct,Sprice);
}
/** @When | add the :product to the basket **/
public function iAddTheToTheBasket($Sproduct)
{
Sthis->basket->addProduct(Sproduct);
}
/** @Then | should have :count product in the basket **/
public function iShouldHaveProductinTheBasket(Scount)
{
PHPUnit_Framework_Assert::assertCount(intval(Scount),Sthis->basket);
}
/** @Then the overall basket price should be €:price **/
public function theOverallBasketPriceShouldBePs(Sprice)
{
PHPUnit_Framework_Assert::assertSame(floatval(Sprice), Sthis->basket->getTotalPrice());

}

Pros of Behavior Driven Development (BDD)

e agile workflow
® communication between users and developers

® short response time

Cons of Behavior Driven Development (BDD)

e if user not available, difficult to work with user stories

e need to dedicate a team of developers to work with users

Risk-based testing

® Use risk analysis to prioritize what should be tested

e “What happens if this class or
function fails? How probable?”

® Severity + probability

e “Risk coverage” instead of “code
coverage” as a metric

RISK ASSESSMENT MATRIX

Eliminated
(F)

Catastrophic
(1

Critical
(2)

Marginal
(3)

Negligible
4

Risk-based testing - risks in LimeSurvey

1. Catastrophic: Data loss or security issues
2. Critical: Blocking issues, e.g. “Next” button doesn’t work
3. Marginal: Some rarely used option won't save

4. Negligible: Cosmetic issues, spelling etc

“Negligible” can still have high priority if frequency is high.

Unit Tests vs Integration Tests vs Ul Tests

e Unit Test: only testing one unit = class or function (helpers...)
® Integration Test: testing interaction between classes
e Ul Test: black box test for Ul

® Sanity test: Test basic functionality of a feature, no edge cases

Good tests

e Tests only one thing (one assert per test, ultimately)
e Order of tests must not matter
e Independent tests

® Proper clean-up (tear-down)

Bad tests

® Tests multiple things

e Hard to read

e Hard to maintain (tests superficial or cosmetic things)

e Tests which are affecting other tests after (session, S_POST, ...)

® Worse test is the test that doesn’t exist?

Negative tests

® Test proper failure
e Important to make sure silent failures never happen

e Example: throw invalid argument exception, assert() in code

Testable code

Testable function:
e Clear relation between input and output
e Short

e No side-effects (but uncommon in data-driven application like LS)
O Loading or saving data
O Reading or writing to files

O Reading or writing global state

Testable function - getGidPrevious()

function getGidPrevious($surveyid, S$gid)
{
Ssurveyid = (int) Ssurveyid;
$s_lang = Survey::model()->findByPk($surveyid)->language;
Sqresult = QuestionGroup::model()->findAlIByAttributes(array('sid' => Ssurveyid, 'language’ => Ss_lang),
array(‘order'=>'group_order'));
Si=0;
SiPrev = -1;
foreach (Sqresult as Sqrow) {
Sqrow = Sgrow->attributes;
if (Sgid == Sqrow[gid']) {SiPrev = Si- 1;}
Si+=1;
}

if (§iPrev >= 0) {$GidPrev = Sqresult[SiPrev]->gid; } else {$GidPrev = ""; }
return $GidPrev;

}
e Side-effects - boo

® Requires database setup to test

Testable function - getGidPrevious() improved

function getGidPrevious(SquestionGroups, Sgid)

{

$i=0;

SiPrev = -1;

foreach (SquestionGroups as Sqrow) {
Sqrow = Sgrow->attributes;
if (Sgid == Sqrow['gid1]) {SiPrev = Si - 1; }
Si+=1;

}

if (SiPrev >= 0) {SGidPrev = SquestionGroups|[SiPrev]->gid; } else {SGidPrev = "; }
return $SGidPrev;

}
® No side-effects

e Side-effects moved higher up in stacktrace (saving and loading data, e.g.)

e Does not require setup or tear-down

Testable classes

Dependency injection (DI)
Example: class A depends on class B, want to test A without testing B

Example in LS: Almost all classes depend on Permission model - how to ignore it
In tests?

Testing without Permission model

® NOW: US€ \y.anp(»sessionfioginip] = 1. (SUPEradmin)

e Bad: Not contained, affects tests run after (or needs tear-down)
e Future: Inject mock Permission model which always returns true
® Use Permissioninterface instead of Permission model

e Related: PHP 7 anonymous classes (on-the-fly classes)

Without dependency injection

// An example without dependency injection

public class Client {
// Internal reference to the service used by this client
private ExampleService service;

// Constructor

Client() {
// Specify a specific implementation in the constructor instead of using dependency injection
service = new ExampleService();

}

// Method within this client that uses the services
public String greet() {
return "Hello " + service.getName();
}
}

With constructor dependency injection

// An example with constructor dependency injection
public class Client {
// Internal reference to the service used by this client
private ExampleService service;

// Constructor

Client(Service service) {
// Save the reference to the passed-in service inside this client
this.service = service;

}

// Method within this client that uses the services
public String greet() {
return "Hello " + service.getName();
}
}

Dependency injection in PHP

PSR-11 supported by Yii 3
Container Interface (https://www.php-fig.org/psr/psr-11/)

Our testing system

e PHPUnit

e Selenium

e Geckodriver

® Firefox

e Facebook WebDriver

e Jest (JavaScript) Framework

e Travis (Docker)

Folder structure

® unit
without selenium

e functional
with selenium

Example unit test

public function testToken()

{
// Get our token.
Stokens = \TokenDynamic::model(self::Ssurveyld)->findAll();
Stoken = Stokens|0];

// Change lastname.
Stoken->lastname = 'last;
Stoken->encryptSave();

// Load token and decrypt.

Stokens = \TokenDynamic::model(self::Ssurveyld)->findAll();
Stoken = Stokens|0];

Stoken->decrypt();

Sthis->assertEquals(last’, Stoken->lastname);

Example functional test

class LanguageChangerTest extends TestBaseClassWeb

{

public function testLanguageSelect()

{
Sweb = self::SWebDriver;

Surl = Sthis->getSurveyUrl(‘pt’);

Sweb->get(Surl);
Sweb->changelLanguageSelect('de’);

sleep(1);
Stext = Sweb->findByCSS(‘.question-count-text’);

Sthis->assertContains(Stext->getText(), ‘In dieser Umfrage sind 2 Fragen enthalten.);

}

Possible workflow for new feature

New feature workflow

' ™
MNew feature
Dev team (branch :
Write Write Regression tests only needed for risky bugs
feature reg. test
A
Write .
sanity test Fix bug(s)
A
A vy
7
' ™
1. Don't start QA before sanity tests
QA team Found bug(s) 2. Don't restart QA before regressions tests
QA 3. Only merge when QA says OK
Y
&
_ Mo bugs Y,

Merge

https://bugs.limesurvey.org/view.php?id=15336

