W T P survey price change

Let x_{0} be the initial celling price of the selected beverage and p be the proportion at which the price changes. In our case p is 0.5 if price $\left(x_{0}\right)$ less than or equal to $4 S A R$ and 0.25 if price is more than $4 S A R$. If $i,(i=1,2, \ldots, 10)$ represent the index of each repetition, then the price for $i^{\text {th }}$ repetition is given by the formula.

$$
x_{i}=x_{0}+\left(2^{i-1} \times p \times x_{0}\right)
$$

and if the subject respond ' $N O^{\prime}$ to the $k^{\text {th }}$ bid value for $k>2$ then to get the price more closer the algorithm will reset the x_{0} as $x_{k}-1$ and restart the process form $i=1,2, \ldots,(k-1)$ and this will continue until we get 'NO' for $i<3$

Example

Assume that the subject select a drink with price $=4 S A R$, then we will have the value of $x_{0}=4$. Since the value is less than or equal to $4, p$ will take value 0.5 . Then the first $(i=1)$ willingness to pay question will ask the subject that whether he is willing to buy the product for the price x_{1}, which is,

$$
x_{1}=4+\left(2^{1-1} \times 0.5 \times 4\right)=6 S A R
$$

if the subject is willing to purchase the product then the next bid will be for $i=2$ which is,

$$
x_{2}=4+\left(2^{2-1} \times 0.5 \times 4\right)=8 S A R
$$

The algorithm continues unless the subject say that he is not willing to purchase or the index i reaches its maximum of 10 .

Now assume that the subject responded ' $N O^{\prime}$ for the $4^{\text {th }}$ bid that is for the price $20 S A R$, then we have the assumption that price is between $12(i=3)$ and $20(i=k=4)$. The algorithm reset the x_{0} as 12 and restart the iteration.

Hence the next bid value will be,

$$
x_{1}=12+\left(2^{1-1} \times 0.5 \times 4\right)=14 S A R
$$

if 'YES' then $i=2$,

$$
x_{2}=12+\left(2^{2-1} \times 0.5 \times 4\right)=16 S A R
$$

if 'YES' then $i=3$, we know that the next value is again $20 S A R$ which was responded as ' $N O^{\prime}$, so we need to reset, x_{0} as 16 and restart the process from $i=1$.

The result will be,

$$
x_{1}=16+\left(2^{1-1} \times 0.5 \times 4\right)=18 S A R
$$

if answer is 'Yes' then store the value 18 and if it is ' $N o^{\prime}$ then store value $x_{0}=16 S A R$ since the subject respond ' $N O^{\prime}$ to the $k^{\text {th }}$ bid value while $k<3$.

